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1. INTRODUCTION AND STATEMENT OF RESULTS

In the last few years much attention has been paid to the study of the
information entropy

S\=&| \(x) ln \(x) dx,

of the density \(x)=|9(x)|2 of a quantum mechanical system with the
wave function 9(x). This functional characterizes the localization of the
density \. Based on this interpretation and using the work of Bialynicki-
Birula and Mycielski [6], Gadre et al. [9] derived a new and stronger
version of the quantum-mechanical Heisenberg uncertainty principle for
finite physical systems which gives a quantitative expression to the property
that a sharp position density \(x) is associated to a diffuse momentum density
#(\). In addition, both the position and momentum information entropies
of a physical system are closely related to various fundamental and�or
experimentally measurable quantities of the system (see [1]).

Very often, especially for single-particle systems in spherically symmetric
quantum-mechanical potentials, the distribution function \(x) can be
expressed in terms of the classical orthogonal polynomials (Jacobi, Laguerre,
etc.). Recently, it has been explicitly shown [4, 7, 23] that for the harmonic
oscillator and Coulomb potentials the determination of the corresponding
position and momentum information entropies reduces to the study of the
functionals

Sn(w)=&|
2

p2
n(x) ln p2

n(x) w(x) dx, (1)

where pn(x)= pn(w; x) is the n th polynomial orthonormal with respect to
a weight w(x) on an interval 2/R. These functionals are called, for
obvious reasons, information entropies of the (orthonormal) polynomials
pn(x).

The asymptotics of Sn(w) has been thoroughly studied in [2, 3, 8, 22]
for general orthogonal polynomials, when w(x) belongs to a wide class of
functions such as that of Bernstein-Szego� , Szego� , or Freud. However, this
problem for polynomials orthogonal with respect to a classical weight w(x)
whose parameters grow with the degree n of the polynomial has till now
not been investigated. Such a situation occurs in a great variety of physical
systems [5, 23], and particularly for the hydrogen atom, where the
asymptotic case corresponds to the so-called Rydberg region (i.e., the
region of bound states characterized by a very high principal quantum
number) where the transition from quantum to classical phenomena takes
place.
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Let wn(x) be a sequence of weights on an interval 2/R and pn, m(x)=
ln, mxm+ } } } with ln, m>0 denotes the m th orthonormal polynomial with
respect to wn ,

|
2

pn, i (x) pn, j (x) wn(x) dx=$ij , i, j # N.

Then, the information entropy (1) becomes

Sn=&|
2

p2
n, n(x) ln p2

n, n(x) wn(x) dx. (2)

In this paper we study the asymptotic behavior of Sn in the following two
cases:

v Varying Jacobi weight,

wn(x)=(1&x):n (1+x);n, 2=[&1, 1], (3)

where :n=:n+o(n), ;n=;n+o(n), with :, ;>0;

v Varying Laguerre weight,

wn(x)=x:n exp(&;n x), 2=[0, +�), (4)

where :n=:n+o(n), ;n=;n+o(n), with :, ;>0.

In [2] the entropy is computed for the fixed weight w as the limit value
of the L p norms when p � 1, which in turn is studied using the well known
asymptotic expressions for the polynomial inside and at the endpoints of
the interval of orthogonality. Unfortunately, in the case of the varying
weights the strong asymptotics of the orthogonal polynomials has not been
well studied. For wn given in (3) some asymptotic expressions for pn, n(x)
were obtained in [11] using the steepest descent approach and in [13] by
the Darboux's method. For the varying Laguerre weights analogous results
have been obtained in [10]. In both cases the final formulas are not sufficient
for the study of the functional (2).

Here, we shall use some weaker asymptotic properties of [ pn, n]. In fact,
for general varying weights only the n th root asymptotics of such a
sequence has been studied in detail by Gonchar, Rakhmanov, Mhaskar,
and Saff (see [12, 14]). They proved that the main parameters describing
the asymptotics are the support and the extremal constant of the equi-
librium measure in an external field, arising from the limit of the n th root
of the sequence of weights. We state these results in a weak form, sufficient
for our purposes.
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Let . be continuous in the interior of 2, such that uniformly on compact
subsets inside 2,

lim
n

1
2n

ln wn(x)=&.(x), (5)

and if 2 is unbounded,

lim
x � �, x # 2

(.(x)&ln |x| )=+�. (6)

Then there exists a unique probability measure *=*(.), with K=supp */2,
such that for x # K,

(V*+.)(x)=|=min
x # 2

(V*+.)(x), (7)

where

V*(z)=&| ln |z&x| d*(x)

is the logarithmic potential of the equilibrium measure * with the external
field ., and |=|(.) is the extremal constant. Furthermore,

|=#K+| . d+K , (8)

where #K and +K are the Robin constant and the Robin distribution of the
compact set K, respectively; in particular, if K=[a, b] then

#[a, b]=&ln \b&a
4 + and d+[a, b](x)=

dx

? - (b&x)(x&a)
.

From [12, 14] it follows that for certain weights wn(x) such as those in (3)
and (4),

lim
n

1
n

ln | pn, n(x)|=|&V*(x), uniformly for x # R"K. (9)

The main result of this paper can be formulated as the following theorem:

Theorem. Let wn be as in (3) or (4). Then

Sn=&2n(|(.)&#K)+o(n)=&2n | . d+K+o(n), n � �. (10)
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From this theorem straightforward computations allow us to obtain
explicit formulas for the entropies of the varying Jacobi and Laguerre
weights:

Corollary 1. For the varying Jacobi weight wn(x)=(1&x):n (1+x);n

given in (3)

Sn=&2n {: ln
2

- 1&a+- 1&b
+; ln

2

- 1+a+- 1+b=+o(n),

where

a=
;2&:2&4 - (1+:)(1+;)(1+:+;)

(:+;+2)2 , (11)

b=
;2&:2+4 - (1+:)(1+;)(1+:+;)

(:+;+2)2 . (12)

In particular, if :=; (the asymptotically Gegenbauer case),

b=&a=
- 1+2:

1+:
,

and

Sn=&2:n ln \1+
1

2:+1++o(n).

Corollary 2. For Laguerre weights wn(x)=x:n exp(&;nx) given in (4)

Sn=&n {:+2+: ln \ ;
:+1+=+o(n).

For applications it is necessary to study also the asymptotics for the
Laguerre weights given in (4) with ;n #1. From the previous results it is
immediate to obtain the formula:

Corollary 3. For wn(x)=x:n exp(&x) with :n+o(n), :>0,

Sn(wn)=:n ln n&n[:+2&: ln(:+1)]+o(n).

Notice that although the dominant term in Sn(wn) in this case is n ln n
and not n, this does not contradict general formula in (10) because condi-
tion (6) is not satisfied either.
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The structure of the paper is as follows. In the next section we establish
the weak-* asymptotics of the sequence p2

n, n(x) wn(x), using the convergence
of the coefficients of the recurrence relation involving the polynomials pn, n&1 ,
pn, n , and pn, n+1 . Furthermore, we establish bounds that are used to estimate
terms in the entropy integral. This enables us to prove in Section 3 the
main result and its corollaries.

2. AUXILIARY RESULTS

The polynomials pn, m satisfy a three-term recurrence relation, namely

xpn, m(x)= :
1

j=&1

cm, m+ j (n) pn, m+ j (x), (13)

where cm, m(n) # R and

cm, m+1(n)=ln, m �ln, m+1 , cm, m&1(n)=ln, m&1 �ln, m .

If for a fixed n the coefficients cm, m+ j (n) converge as m � �,

lim
m

cm, m(n)=cn , lim
m

cm, m+1(n)=dn>0,

the weight wn(x) is said to belong to the Nevai-Blumenthal class M(cn , dn).
From [17, 18], a sufficient condition for this is wn(x)>0 a.e. on
[cn&2dn , cn+2dn]. Then (see [15]), p2

n, m(x) wn(x) dx weakly converges
(as m � �) to the Robin distribution on [cn&2dn , cn+2dn]. The fact that
this assertion is true also in the case of varying n was first observed by Van
Assche [21]; here we give for completeness a proof analogous to the one
in the classical case.

Lemma 1. If

lim
n

cn, n+1(n)=lim
n

cn, n&1(n)=d>0 and
(14)

lim
n

cn, n(n)=c # R,

then for every polynomial q,

|
2

q(x) p2
n, n(x) wn(x) dx � | q(x) d+[a, b](x), (15)

where a=c&2d and b=c+2d.
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Proof. It is sufficient to show that all the moments of p2
n, n(x) wn(x) dx

converge to the corresponding moments of +[a, b] . By Lemma 12 of [15, p. 45],
for j # N,

x jp2
n, m(x)

= :
1�k1, ..., kj�1

`
j&1

i=0

cm+k0+ } } } +ki, m+k1+ } } } +ki+1
(n) pn, m+k1+ } } } +kj (x),

where k0=0 and kj # Z. Hence,

+ ( j)
n, m :=|

2
x jp2

n, m(x) wn(x) dx

=:$ `
j&1

i=0

cm+k0+ } } } +ki, m+k1+ } } } +ki+1
(n), (16)

where the symbol �$ means that the indices kj vary over the set
[&1�k1 , ..., kj�1, k1+ } } } +kj=0]. In what follows, we take m=n and
write cn, n+ j instead of cn, n+ j (n) whenever it cannot lead to confusion.
Since by (14),

lim
n

cn, n+i=(1&|i | ) c+|i | d, |i |�1,

we have that

+( j) :=lim
n

+ ( j)
n, n =:$ `

j

i=1

((1&|ki | ) c+|ki | d )

=:$ (d&c) j \ d
d&c+

|k1| + } } } +|kj |

\ c
d&c+

j&|k1|& } } } &|kj |

= :
[ j�2]

t=0
\j

t+\
j&t

t + d 2tc j&2t.

Now we compute the corresponding moments of +[a, b] . Since

a+b
2

=c and
b&a

2
=2d,

an easy computation show that

|
b

a
x j d+[a, b](x)=c j :

[ j�2]

t=0
\ j

2t+\
2d
c +

2t 1
? |

1

&1

x2t dx

- 1&x2
=+( j).

The assertion is established.
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In order to prove results for Laguerre polynomials we need the following
bounds:

Lemma 2. For the weights (4), there exists a constant b1>0 such that
for every m # N,

|
+�

b1

xmp2
n, n(x) wn(x) dx � 0, n � �. (17)

Proof. Let L (:)
n (x) denote the Laguerre polynomial, orthonormal with

respect to the weight x: exp(&x). Then

pn, n(x)=(;n) (:n+1)�2 L (:n)
n (;n x). (18)

From the well known bounds on the largest zeros of Laguerre polynomials
(see, e.g., inequality (6.31.7) in [20]) it follows that all the zeros of pn, n are
uniformly bounded.

Furthermore, using the explicit expression (see (24) below) for the main
coefficient of L (:)

n (x) it is straightforward to work out the asymptotics for
the leading coefficient ln, n of pn, n ,

l2
n, n=Ce%n(1+o(1)), n � �,

where C and % are constants which depend only on : and ; (see (4)); their
exact values play no role in what follows.

Now we can estimate the integral in the left hand side of (17). Take
b1>1 such that for every n # N the zeros of pn, n lie on [0, b1]. Then, on
[b1 , +�) the following bound is straightforward (m�n),

xmp2
n, n(x)�l2

n, nx3n.

Using the Laplace method with b1>(3+:)�;, we get

|
+�

b1

xmp2
n, n(x) wn(x) dx�C1 l2

n, n enf (b1),

where f (x)=(3+:) ln x&;x. Thus, it remains to take b1 large enough to
make f (b1)+%<0 and use the asymptotics for ln, n . The lemma is proved.

Remark. The previous lemma also follows from Theorem 6.1 in [19,
Sect. III.6].

In the next lemma we establish a weighted bound for the polynomial pn, n

on 2. More precise inequalities for the Jacobi weight can be found in [16].
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Lemma 3. For the weights wn given in (3) or (4), there exist positive
constants C and q independent of n such that

p2
n, n(x) wn(x)�Cnq, for x # 2. (19)

Proof. We give a detailed proof for the varying Jacobi weight (3).
Rewrite wn(x) in the form

wn(x)=(1&x)2kn+:̂n (1+x)2ln+;� n,

where kn , ln # N and :̂n , ;� n # [0, 2). Set

qn(x)= pn, n(x)(1&x)kn (1+x) ln, n̂ :=deg qn=(1+:�2+;�2) n+o(n).

Evidently,

|
1

&1
q2

n(x) ŵn(x) dx=1, where ŵn(x)=(1&x) :̂n (1+x);� n.

From the extremal property of the Christoffel kernel it follows that

q2
n(x)� :

n̂

m=0

p̂2
m(x), (20)

where p̂m(x) are Jacobi polynomials orthonormal with respect to ŵn(x).
The following bounds are well known (see [20, Sect. 7.32]),

| p̂m(x)|�C1 m5�2, for x # [&1, 1],

with C1 independent of n and m. Hence, from (20),

q2
n(x)� :

n̂

m=0

C 2
1 m5�C2n6.

Then,

p2
n, n(x) wn(x)=q2

n(x) ŵn(x)�Cn6.

The Laguerre case can be handled in a similar way. Representing the
weight as above and making a change of variable, the problem is reduced
to the estimation of the Christoffel kernel of degree n̂=(1+:�2) n+o(n)
for the generalized Laguerre weights with bounded parameters :̂n and
;n #1. Lemma 3 then follows from the known estimates for Laguerre
polynomials.

Finally, we apply Lemma 1 and Lemma 2 to the weights given in (3)
and (4).
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Corollary 4. For the varying Jacobi weights (3),

p2
n, n(x) wn(x) dx � d+[a, b](x)

in the weak-* topology, where a and b are given by (11) and (12), respectively.

Proof. For the weight (3) the leading coefficient of orthonormal poly-
nomial is well known (cf. formulas (4.21.6) and (4.3.4) in [20]),

ln, m =\ :n+;n+2m+1
m! 2:n+;n+11(:n+;n+m+1) 1(:n+m+1) 1(;n+m+1)+

1�2

_2&m1(:n+;n+2m+1).

Hence, the coefficients in the recurrence relation (13) are

l2
n, n

l2
n, n+1

=
4(n+1)(:n+n+1)(;n+n+1)(:n+;n+n+1)

(:n+;n+2n+1)(:n+;n+2n+2)2 (:n+;n+2n+3)
(21)

and

cn, n(n)=
;2

n&:2
n

(:n+;n+2n+2)(:n+;n+2n)
. (22)

Thus, (14) holds with

c=
;2&:2

(:+;+2)2 , and d=2
- (1+:)(1+;)(1+:+;)

(:+;+2)2 . (23)

Notice (cf. Example 1.17 in [19, Sect. IV.1]) that [a, b] is the support K
of the equilibrium measure + corresponding to the external field

.(x)=&
:
2

ln |1&x|&
;
2

ln |1+x|.

Thus, the corollary is proved.

Corollary 5. For the varying Laguerre weights (4),

p2
n, n(x) wn(x) dx � d+[a, b](x)

in the weak-* topology, where a and b are given by

a=
:+2&2 - :+1

;
, and b=

:+2+2 - :+1
;

.
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Proof. By (5.1.1), (5.1.8) in [20] and (18) we have that

ln, m=; ((:n+1)�2)+m�- m! 1(:n+m+1). (24)

Thus, the coefficients of the recurrence relation (13) are

ln, n

ln, n+1

=
- (n+1)(n+:n+1)

;n
, and cn, n(n)=

2n+:n+1
;n

.

Weak asymptotics follows directly from (15) and Lemma 2. As above, (see
Example 1.18 in [19, Sect. IV.1]), the equilibrium measure + corresponding
to the external field

.(x)=&
:
2

ln x+
;
2

x

is supported on K=[a, b].

3. ENTROPY ASYMPTOTICS FOR VARYING WEIGHTS

Denote hn(x)= p2
n, n(x) wn(x). Then the entropy (2) can be rewritten as

Sn=&|
2

hn(x) ln hn(x) dx+|
2

hn(x) ln wn(x) dx. (25)

We estimate the first term in the right hand side of (25). By Lemma 3,

&|
2

hn(x) ln hn(x) dx�C&q ln n |
2

hn(x) dx=C&q ln n.

On the other hand, since �(t)=t ln t for t>0 is convex, by Jensen's
inequality,

&|
2

�(hn(x)) dx�&� \|2
hn(x) dx+=0.

Thus, the first term in (25) is O(ln n). In order to find the main term of the
asymptotic expansion of Sn it is sufficient to establish convergence and find
the limit of

1
n |

2
hn(x) ln wn(x) dx.
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Fix a bounded interval 2$=[a$, b$] such that

K/2$/2,

where both inclusions are strict. Write

|
2

hn(x) ln wn(x) dx=\|2$
+|

2"2$ + hn(x) ln wn(x) dx. (26)

We investigate first the Jacobi case. On the one hand, by (5),

lim
n |

2$
hn(x) \1

n
ln wn(x)+2.(x)+ dx=0. (27)

Furthermore, by Corollary 4,

lim
n |

2$
.(x) hn(x) dx=| .(x) d+[a, b](x). (28)

On the other hand, (9) implies that

lim
n

hn(x)=0, (29)

uniformly on 2"2$, where the sequence n&1 ln wn(x) is majorized by an L1

function. Thus,

lim
n

1
n |

2"2$
hn(x) ln wn(x) dx=0. (30)

From (27), (28), and (30) we get

lim
n

1
n |

2
hn(x) ln wn(x) dx=| .(x) d+[a, b](x). (31)

The Laguerre case is studied analogously with the added feature that 2
is unbounded. Splitting the integral like in (26), for the estimation of the
first term the same arguments work. Moreover, they are valid also on
[0, a$]. Hence, it remains to consider

1
n |

+�

b$
hn(x) ln wn(x) dx.

Since n&1ln wn(x)�cx, c>0, for x # [b$, +�), we get

1
n |

+�

b$
hn(x) ln wn(x) dx�c |

+�

b$
xhn(x) dx.
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It remains to take b$>b1 , where b1 is as in Lemma 2, and use (17); thus
the last integral vanishes as n � �. This concludes the proof of (31) for the
Laguerre weights (4) as well. Equation (8) is the last step to establish (10).

Corollaries 1 and 2 for the weights (3) and (4) are straightforward conse-
quences of explicit formulas for the constants |(.) (see [19, Sect. IV.1]).
Finally, for the weight wn(x)=x:n exp(&x) the change of variable x=nt
allows us to reduce the study of Sn(wn) to the situation of Corollary 2 with
;n=n.
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